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The F-E-M-Test for Convergence of Nonconforming 
Finite Elements 

By Zhong-ci Shi 

Summary. A new convergence test, the F-E-M-Test, is established for the method of 
nonconforming finite elements. The F-E-M-Test is simple to apply, it checks only the local 
properties of shape functions along each interface or on each element. The test is valid for a 
wide class of nonconforming elements in practical applications. 

1. Introduction. A simple and widely used procedure for checking convergence of 
nonconforming finite elements is the patch test, first presented by Irons in [1], [4]. As 
originally phrased in terms of mechanics, the basic idea of the patch test is that if the 
boundary displacements of an arbitrary patch of assembled elements are subject to a 
constant strain state, then the solution of the finite element equations on the patch 
should reproduce this presumed solution exactly. The mathematical explanation of 
the Irons patch test was given by Strang [16], [17]. Let ah(u, v) be the discrete 
bilinear form of the given variational problem, u* the true solution of the problem 
and uh the finite element approximation. Then the patch test has the following 
mathematical formulation: 

(1) dh(u*, Oh) - ah(Ua Vh) ah (Uh, Vh) = 0 VU* E p Vh E Vh, 

where Vh is the finite element space in which the approximate solution uh is sought, 
Pm is the space of polynomials of degree m and m is the highest order of derivatives 
appearing in the variational problem. 

However, it has been proved in [19], [7], [8] that Irons's patch test or its equivalent, 
the formula (1), is neither necessary nor sufficient for convergence. 

In a recent paper [21], Taylor et al. gave a discussion concerning the validity of the 
patch test from an engineer's point of view. A new form of the patch test, Test C, is 
formulated which checks not only the satisfaction of the basic differential equation 
but also of its natural or 'traction' boundary conditions, as well as of the stability 
requirement of approximate problems. Paper [21] claims that Test C is a correct 
interpretation of the patch test, which should provide a necessary and sufficient 
condition for convergence. The first counterexample of Stummel [19] to the patch 
test was checked in [21] by Test C and failed to pass the test. However, it is shown in 
[12] that Stummel's second example still passes Test C but fails to converge to the 
true solution for natural boundary conditions. Hence, Test C cannot be a sufficient 
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condition for convergence of nonconforming finite elements. A further analysis and 
interpretation of the patch test is apparently needed. 

Because of the limitations of the patch test, Stummel [18] has proposed the 
generalized patch test, which together with the approximability condition provides a 
necessary and sufficient condition for convergence of nonconforming elements 
applied to general elliptic boundary value problems. Many nonconforming elements 
have been successfully tested by the generalized patch test in [18], [7], [8], [9], [10]. 
The generalized patch test is a very powerful tool for the study of convergence 
properties of nonconforming elements. However, its usage seems to be difficult for 
engineers in practical situations. 

The aim of this paper is to present a simple and effective convergence test which 
may easily be checked along each interface, the F-Test, or on each element, the 
E-M-Test. The new test has been first mentioned in [13] and later in [11], [3]. In this 
paper we describe the test in detail. 

2. Formulation of the F-E-M-Test. 2.1. We consider variational equations of the 
form 

(2) uOE V; A f aCTD'u0DTvdx = J f fDCvdx A Vv E V, 
IJI ITIam G lem G 

where G is a polyhedral domain in R' and V is a closed subspace of the Sobolev 
space Hm(G) = (v: D?v E L2(G), Va such that IaI < m }, equipped with the norm 

1/2 

ffVffmG= ( IJ DovI 2dx) 

and the seminorm 
1/2 

IVImG= (. I DfDVI 2dXl 

The coefficients a are bounded measurable functions on G and JC E L2(G) for 
a j < m. The variational equation (2) may be written in the form 

(3) uO E V; a(uOv) = l(v) Vv E V. 

Dividing the domain G into a regular family of finite elements K with diameters 
h K < h and defining appropriate piecewise polynomial spaces Vh, the finite element 
approximation of the problem (3) then is to find Uh E Vh such that 

(4) ah(uh, Vh) = lh(Vh) VVh E Vh, 

where 

ah(uv) = a ( 
f aorD'uDTvdx, 

K 1a1, ITrm K 

1h(V) = E E ffD vdx. 
K juJ<m K 

We assume, as usual, that the bilinear form a(u, v) is continuous on Hm(G) X 
H"'(G) and V-elliptic over the space V, and that the discrete bilinear form ah(u, v) 
is uniformly Vh-elliptic over the spaces Vh. Then the Lax-Milgram Theorem guaran- 
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tees the unique solvability of the variational equations (3), (4). Note that certain 
weaker stability conditions concerning the bilinear forms a(u, v), ah(u, v) have been 
stated in [20]. 

2.2. The F-E-M-Test is now described for the problem (4) with m = 1, 2 corre- 
sponding to general elliptic boundary value problems of second and fourth order. 
The test consists of tests of two different types. The first is a face test, the F-Test, 
which checks the conditions (F) along each interface, and the second is an element 
test, the E-M-Test, which verifies the conditions (E) + (M) on each element. In the 
following, the notation DkVh is used for the partial derivative of Vh with respect to 
Xk. 

FI-Test. The finite element space Vh is said to pass the F1-Test for problems of 
order 2m, if for every function Vh E Vh the jump of Vh, denoted by [VhI, across each 
interface F of two adjacent elements KI, K2 satisfies the condition 

(Fl) F [VhI ds < o(h/j2)IVhI m K,KUK2, hK = max(hK, hK) 

For every outer boundary F C aK n aG with Dirichlet boundary conditions, we 
define the jump [Vh] F Vh I F and the condition (Fl) is understood as 

|J h d| ?(K/ )1h 11m, K- 

F2-Test. For fourth-order problems the F2-Test requires that the jumps [DkVhI 

across each interface F satisfy the condition 

(F2) f[Dkvhds < o(hn12)I11vhI2 KlUK2 k = 1,2,.. ., n. 

For every outer boundary F C aK n aG with Dirichlet boundary conditions we 
define [Dkvh F Dk~h I F and the condition (F2) reads 

D J khds < o: O( h n1)llh1 k = 1,2,. .. ., n. 

In particular, if in the condition (Fl) or (F2) the equality 

A V]ds=0 or f[DkVhlds=0 k= 1,2,...InI 

holds for all F C MK, respectively, the F-Tests are called the strong F1-Test or 
F2-Test, respectively. 

El-Ml-Test. The finite element space Vh is said to pass the El-Ml-Test for 
problems of order 2m, if every function vh E Vh can be decomposed into two parts, 
a continuous part Cl(Vh) and a discontinuous part N1( Vh): 

(5) Vh = Cl(vh) + Nl(vh), 

such that on each element K the discontinuous part N1(Vh) satisfies the two 
conditions 

(El) JKN1(Vh)nrds < O(h n/2)IIVhIlmK' r = 1,2,..., n 

3K 
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where nr are the components of the unit outward normal vector on the boundary 
3K. 

E2-M2-Test. For fourth-order problems, the E2-M2-Test requires that the first 
derivatives Dkvh can be decomposed into two parts 

(6) Dkvh = C2(DkVh) + N2(DkVh), k = 1, 2,.. ., n, 

where C2(DkVh) are continuous functions over all elements and N2(DkVh) are the 
associated remainder terms such that on each element K the discontinuous parts 
N2 ( Dkvh) satisfy the conditions 

(E2) f N2(DkVh)frdn < o(h/2)llhl2K k,r= 12 ... n 

(M2) J N2(Dkvh)2d5 o o(hK1)IlvhII2K, k = 1,2,...,n. 
3K 

Similar to the strong F-Tests, if the equalities 

f3 K (Vh)nrds = 0, r = 1,2, ... n, aK 

or 

N2(DkVh)nrdS 
= ?, k, r= 1, 2, .... InI 

fK 

hold for every element K, respectively, the tests are called the strong E1-MI-Test or 
E2-M 2-Test, respectively. 

THEOREM 1. For second-order problems (m = 1), the F1-Test or the E1-MI-Test 
implies convergence. 

THEOREM 2. For fourth-order problems (m = 2), the F1-Test or the E1-MI-Test 
together with the F2-Test or the E2-M2-Test imply convergence. 

The proof of these two theorems will be given in Section 4. 
2.3. According to the above convergence theorems, we summarize the procedure of 

the F-E-M-Test as follows: 
For second-order problems (m = 1) the test is carried out in two steps. 
Step 1. Verify the F1-Test for each interface and each outer boundary where 

Dirichlet boundary conditions are prescribed. If it is passed, convergence is guaran- 
teed. 

Step 2. If the F1-Test fails, verify the E1-MI-Test for each element. We need a 
decomposition of the shape function Vh. When the vertices of the element are nodal 
points of Vh, the corresponding linear or bilinear Lagrangian interpolating poly- 
nomial for Vh at the vertices is a good choice of a continuous part CI(Vh) in (5). The 
discontinuous part N1(Vh) now is the remainder term of the interpolating poly- 
nomial. By interpolation theory (see [18, Inequality 2.1.(5)]) and the inverse prop- 
erty, we then have 

(7) f2N(L)d (7) | ~~~NI(Vh) ds < C hK|IV h12 K Ch Id h 1 K- 
aK 
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Here and later, C denotes a generic constant, independent of the mesh size h, which 
may have different values at different places. The inequality (7) obviously implies 
the condition (Ml). Therefore, only the condition (El) has to be verified. If it is 
passed, convergence follows. 

For fourth-order problems (m = 2) we carry out three steps. 
Step 1. Verify the F1-Test. The condition (Fl) with m = 2 holds if the shape 

function 0h has two nodal points on each side of the elements, since in that case 
interpolation theory gives 

(8) f [ h] ds h ChKiVh 12 K1UK2 

for each interface F = K1 n K2, and 

(9) 'F h Ch'K Vh 12IK 

for each outer boundary F C aK n aG with Dirichlet boundary conditions. 
We may also verify the El-Ml-Test. The conditions (El) + (Ml) with m = 2 hold 

if the shape function Vh is continuous at the vertices of the elements, because in that 
case the first inequality in (7), that is, 

K 
a h s Ch'Ki Vh l2,K' 

implies both the condition (El) and (Ml) for m = 2. 
In particular, if a plate element under consideration is a C0-element, then both the 

F1-Test and the El-Ml-Test are satisfied a priori. 
It is a common practice that for fourth-order problems every element has two 

nodal points of function values on each side of the elements, usually at the vertices. 
Therefore, the F1-Test or the El-Ml-Test for fourth-order problems is valid in 
practice. 

Step 2. Verify the F2-Test. If it is passed and Step 1 was successful, convergence is 
guaranteed. 

Step 3. If the F2-Test fails, verify the E2-M2-Test. We need certain decompositions 
of the first derivatives Dkvh. If the vertices of the elements are nodal points of Dkvh, 

the corresponding linear or bilinear interpolating polynomials of DkVh at the vertices 
are usually chosen as the continuous parts of DkVh in the decomposition form (6). 
Then the remainder terms N2(DkVh) satisfy the inequalities 

)2dS~~~~ (10) JN2(Dkh)s Ch 12 k = 12 ... n 
aK 

which imply the condition (M2). In this case, only the condition (E2) has to be 
verified. If it is passed and Step 1 was successful, convergence follows. 

Remarks. 1. The strong F-Tests or the strong E-M-Tests imply the satisfaction of 
the Irons patch test. 

2. The F-E-M-Test can be applied for assessing the convergence of certain 
nonconforming elements that do not pass Irons's patch test in the sense of the 
formulation (1), as will be demonstrated in Section 3. 
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3. For fourth-order problems the conditions (F2), (E2), (M2) are simply obtained 
from the corresponding conditions (Fl), (El), (Ml) by replacing the shape functions 
Vh by their first derivatives Dkvh, k = 1, 2, .. ., n. 

4. As we have seen in the above procedure of carrying out the F-E-M-Test, the 
essential conditions which have to be verified are (Fl) or (El), and (F2) or (E2), for 
second-order and fourth-order problems, respectively. The other conditions may 
simply be proved in most practical cases by the continuity assumptions on the shape 
functions or their first derivatives at certain nodal points of the elements. The 
F-E-M-Test is simple to apply. 

3. Applications. It will be proved in this section that many well-known nonconfor- 
ming elements, as well as some newly introduced elements, pass the F-E-M-Test. 

3.1. The Crouzeix-Raviart Elements. This is a class of triangular elements. The 
nodal parameters are the function values at rth order Gaussian points on each side 
F of the triangle K. The shape functions Vh E Vh are piecewise polynomials: 

VK E Prf(K), VKI E Pr(F)l 
for each triangle K and for each side F of K. 

Since every function Vh E Vh is continuous at rth order Gaussian points on each 
interface F = K1 n K2 and the quadrature formula having these Gaussian points as 
nodal points is exact for all polynomials of degree 2r - 1 in one variable on F, we 
obtain 

J[h]F VF K1K nK2. 

For F C aK n aG with Dirichlet boundary conditions, 

JF = 

The Crouzeix-Raviart elements thus pass the strong F1-Test. 
3.2. Wilson's Element. This is a rectangular element. The nodal parameters are the 

function values at the vertices of the rectangle K and the mean values of the second 
derivatives Dlvh and D2vh on K, respectively. The latter are two internal degrees of 
freedom which can be eliminated at the element level. The shape function vh on each 
rectangle is a full quadratic polynomial. 

Let Q1(Vh) be the piecewise bilinear interpolating polynomial of the shape 
function vh at the vertices of all elements and Rl(Vh) be the associated remainder 
term. Then Q1( Vh) is a continuous function over all elements. We have the 
decomposition 

Vh = Ql(Vh) + Rl(vh). 

It can easily be verified that for every rectangle K 

| R(V)nrdS = 0, r = 1,2, 
aK 

so that the strong (El) condition holds. Moreover, it is known from [18, Section 2.2] 
that the remainder term Rl(Vh) satisfies the inequality 

|R(Vah )as ChKlVh IlK, aK 
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thus the condition (Ml) is also satisfied. Therefore, the rectangular Wilson element 
passes the strong El-Ml-Test. 

Now we apply the El-Ml-Test to the quadrilateral Wilson element which violates 
the patch test. The convergence has been previously proved in [8] under the 
condition that the distance dK between the midpoints of the diagonals of each 
quadrilateral K is of order o(hK) uniformly for all elements as h -> 0. 

For the El-M1-Test we need a decomposition formula (5). Following Step 2 of 
Subsection 2.3, the 4-node isoparametric bilinear interpolating polynomial of the 
shape function Vh is chosen as the conforming part Cl(Vh). Then it can be shown 
(see [8]) that for every quadrilateral K the remainder term Nl(vh) = Vh - Cl(vh) 
satisfies the inequalities 

(11) | Nl(Vh)nrds < CdKI Vh IlKS r = 1,2, 

and 

aK ( Vh ChK1 Vh I ,K. 

Comparing the inequality (11) with the condition (El), we find that the condition 
dK = o( hK) makes the quadrilateral Wilson element pass the El-Ml-Test. 

Remark. Two 8-node quadrilateral elements of Sander and Beckers [5] that do not 
pass Irons's patch test have been analyzed in [7], where it was shown that these 
elements also converge under the condition dK= o(hK) Like the quadrilateral 
Wilson element, by use of the 8-node isoparametric Lagrangian interpolating poly- 
nomial of the shape functions as their conforming parts, it can also be proved that 
the two elements of Sander and Beckers pass the El-Ml-Test under the condition 
dK= o(hK). Thus we have seen that our new F-E-M-Test is able to prove the 
convergence of these elements that do not pass the patch test. 

3.3. A New 4-Node Quadrilateral Element. Taylor et al. introduced a new element 
in [21]. On each quadrilateral K the conforming part Cl(Vh) of the shape function 
Vh is the standard 4-node isoparametric bilinear polynomial, as in the quadrilateral 
Wilson element stated above. The nonconforming part N1(Vh) is constructed as a 
linear combination of four special cubic polynomials vanishing at the vertices of the 
reference square K = [-1, 1] x [-1, 1]: 

(12) Nl(vh) = (1 - (1 - q)al +(l + ()(I - 2)a2 

+(I- _2)(1 + q)a3 +(1 - 00- q )a4 

Substitution of N1(Vh) into the condition (El) to satisfy the strong (El) condition 
yields two linear equations for the unknown parameters al, 1 < i < 4. Eliminating 
two of the a, gives two cubic polynomials which form the nonconforming part 
N1(Vh) and are added to the conforming part CI(Vh). Obviously, the new element so 
constructed satisfies the strong El-Ml-Test and thus yields convergence. 

3.4. Modifications of Stummel's Examples. It is known [6], [12], [19] that two 
examples of Stummel pass the patch test but do not imply convergence to the correct 
solution. A simple modification of Stummel's first example has been given in [14], 
[21], which replaces the nonconforming step function w, on each subinterval I, 
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scaled to the reference interval [-1, 1], by the new quadratic polynomial 

(13) gj = [1?+ E(1-S2)] W, -1 S < 1, 

where - is an arbitrary small constant but larger than round-off. 
Actually, the modification (13) may be further extended by introducing on each 

element Ij a general nonconforming basis function 

(14) Tj = f~ Wwp, - I < A ,I 

where f(s) E H1[-1, 1], f(-l) = f(1) = 1, f(s) # 1. The formula (13) is a special 
case of (14). Convergence of the modification (14) can be checked by the El-Ml-Test. 
In fact, let us decompose the shape function Vh of the new modified element as 
follows: 

(15) Vh = Yh + Zh, 

where the conforming part Yh is the usual continuous piecewise linear polynomial 
and the nonconforming part Zh consists of the basis functions (p of (14). Evidently, 
the nonconforming part Zh satisfies the strong (El) condition on each element 

Ij = [xJ_1, X1]: 

(16) Zh(Xj - 0) - Zh(X-1 + o) = 0. 

As for the condition (Ml), it is not obvious whether or not the nonconforming part 
Zh satisfies this condition, because now the conforming part Yh in (15) is not the 
linear interpolating polynomial of Vh at the nodal points, and interpolation theory, 
therefore, is not available for Zh However, after a direct calculation it is found that 
Zh satisfies the following inequality 

(17) Z( + ) + Zh(X O) 2< 
h 2dhI, 

fJ-X1f'(S)2 ds 
which shows that the condition (Ml) is still valid, so that the modification (14) 
passes the strong El-Ml-Test. A similar modification can be made for Stummel's 
second example. 

We note that Stummel's examples pass the strong (El) condition as well, but do 
not satisfy the condition (Ml). 

3.5. Adini's Element. This is a well-known Co rectangular plate element. The 
nodal parameters are the function values and the two first derivatives at the vertices 
of the rectangle K. The shape function vh on K has the form 

eK E P3(K) + [X3x2 X1X2]. 

We use the E-M-Test. Since it is a Co-element, both the F1-Test and the 

El-Ml-Test are automatically passed. Now we verify the E2-M2-Test. By definition, 
the derivatives Dkvh are continuous at the vertices of the elements, so that the 
bilinear interpolating polynomials Ql(DkVh) of DkVh at the vertices are continuous 
over all elements, which gives the following decompositions: 

Dkvh = Ql(DkVh) + Rl(Dkvh), k = 1,2. 

It has been shown in [18] that for every rectangle K, 

|R(DkVh)nrdS = 0, k, r = 1, 2. 
aK 
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In addition, from interpolation theory we have 

)2 ~~~~2 |R,(Dk~h) dS -< ChKI Vh 12,Ki 
aK 

The strong condition (E2) and the condition (M2) are then satisfied. Therefore, 
Adini's element passes the F1-Test, the E1-Ml-Test, and the strong E2-M2-Test. 

3.6. Morley's Element. This is a triangular plate element. The nodal parameters 
are the function values at the vertices of the triangle K and the first derivatives in 
normal direction at the midside nodes. The shape function Vh on K is a quadratic 
polynomial VK E P2(K). 

We use the F-Test. First, it is easily seen that the F1-Test -and the E1-Ml-Test are 
passed because of the continuity of Vh at the vertices of the elements. Next, by the 
definition of the element, on each interface F the jump [DflVh] is a linear polynomial 
in one variable vanishing at the midpoint of F. The midpoint rule gives 

(18) f 
[Dvp*j = 0, Dnvh = 3vh/3n. 

On the other hand, 

Dsh= Vh(b) - Vh(a), DsVh = a hlaS 

a, b being the endpoints of F. Since the shape function Vh is continuous at the 
vertices of all elements, we have 

(19) [Dsvh] dS = O. 

The equalities (18), (19) imply 

J [DkVhl ds = 0, k = 1,2, F = K1 n K2. 

For F c aK n aG with Dirichlet boundary condition, we also have 

'DkFhds=?, k=1,2. 

Hence the strong F2-Test is passed. Morley's element thus passes the F1-Test, the 
E1-M1-Test, and the strong F2-Test. 

3.7. De Veubeke's Element [2, Fig. 6(b)]. This is a triangular element. The nodal 
parameters are the function values at the vertices of the triangle K and at the center 
and the values of the first derivatives in normal direction at the second-order 
Gaussian points on each side of K. The shape function Vh on K is a full cubic 
polynomial VAK E P3(K). 

We use again the F-Test. Like Morley's element, the F1-Test and the E1-MI-Test 
are obviously valid. As for the F2-Test, we note that the jump [Dnvh] of de Veubeke's 
element across each interface F is a quadratic polynomial in one variable vanishing 
at the second-order Gaussian points. Application of the quadrature formula, having 
these two Gaussian points as nodal points, yields 
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from which, by the same argument used in Morley's element, we conclude 

F[Dkh I dS-=. F = K1 n K2, 

and 

FDkh d = 

for outer boundaries F with Dirichlet conditions. Therefore, de Veubeke's element 
passes the Fl-Test, the El-Ml-Test, as well as the strong F2-Test. 

3.8. Specht's Element [15]. This is a new triangular plate element. The nodal 
parameters are the function values and the two first derivatives at the vertices of the 
triangle K. The shape function Vh on K has the form 

(20) h= [X12x 3x1X2x A2X3, X3X1, AX212, A2X3, 3 

A1 X2X3, x1A2X31X2X23], 
using the area coordinates Ai of the triangle K. Three additional constraints 

(21) f P2(S)DDnVhds = 0, i = 1,2,3, 
A,=0 

along the sides of K are introduced, which in conjunction with the nine nodal 
parameters uniquely define a polynomial Vh of the form (20) on the triangle K. In 
(21), P2 denotes the Legendre polynomial of degree 2 on the sides Ai = 0. 

We still apply the F-Test. Since the shape function Vh is continuous at the vertices 
of the elements, the F1-Test and the El-Ml-Test are valid. Secondly, by assumption, 
the jump [Dnfh]F across each interface F. is a polynomial of third degree in one 
variable and vanishes at the endpoints of F. Then, using the constraints (21), the 
expansion of [DnVh ] F in Legendre polynomials takes the form 

(22) [DDnvh]F = a1P1(s) + a3P3(s), 

where Pj, j = 1, 3, are the Legendre polynomials of first and third degree. In the 
expansion (22) there is no constant term P0 by virtue of the fact that the function 
[Dnvh]F has two zeros at the endpoints of F and P1, P3 are odd functions. From 

(22) it follows immediately that 

(23) JF[DnVh] ds 0. 

Once we have the above equality (23), using the continuity of vh at the vertices and 
Dirichlet boundary conditions, we may conclude as in Morley's and de Veubeke's 

elements that the strong F2-Test is valid. Hence Specht's element passes the F,-Test, 
the El-Ml-Test, and the strong F2-Test. 

4. Proof of the Theorems. We apply the generalized patch test of Stummel and 

prove the theorems stated in Section 2 by a series of lemmas. According to [18], for a 
second-order problem (m = 1), the generalized patch test consists in verifying that 
as h -- 0, the relations 

(24) Tr(4' Vh) f E 'Vhnrds 0O r = 1,2,...,n, 
K K 
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hold for every bounded sequence Vh E Vh and for all test functions 4 E CO (G) 
(4, e CO(Rn) in the case of Dirichlet boundary conditions), where nr is defined as 
in (El), (Ml). For a fourth-order problem (m = 2) the test requires that, as h 0, 
the relations 

(25) Tr(4, Vh) =~ 4,Vhnrds O, r= 1,2, ... , ,n, 
K aK 

(26) Tk r(, Vh) =Y f DkVhnrds O. k,r = ,2, ...,n, 
.K aK 

hold for every bounded sequence vh E Vh and for the same class of test functions as 
used in a second-order problem. 

LEMMA 1. The condition (Fl) gives 

|Tr(+, Vh) |< Chl 101Vh 11 h + ?(1)ll+1W1111Vh11im,h1 r 1,n.. 

using the norm 

1/2 

IIUh Imh Y,| (DIUh) dx 

Proof. For every function f E L2(F) let 

(27) pof E fds, IFI FI ds 

be the mean value of f over the side F. The associated remainder term is 

(28) Rof = f- Po . 

Then we write 

TrW Vh) =?Y. f. Po'4R0Vhnrds + ? f R O4R Ovhnrds 
(29) K FcaK F K FcaK F 

+ Y. ? PD Vh n ds . 
K Fc aK 

p Fthfi By the definition of the operators p0F and R0, the first term 6n the right-hand side 
of (29) vanishes, 

(30) P f F =n 0 ( ) ? ? | Po Y. Y ovh^ r dS = o . 
K Fc aK F 

By an application of Schwarz's inequality and interpolation theory [18, 2.1(5)] the 
integrals in the second sum are bounded by 

/\ 1 /2 /\1/2 

fROFRF Vnrds | f(RoF+) ds) (f (RFh) ds) h< ChKI 4, IlK1 Vh lK' 

and so 

( 3 1 ) Y. Y. 0R nds | < ChK F011Vh11, 
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The third term is 

LT f | AP0 hnrdS =Y, I FI PO PO [ Vh]rf- 
K FcaK F F 

Using the condition (Fl), the regularity assumption of element partitions and an 
inequality of the type in [18, 2.1(3)], we have 

F P POF[vh]nr IF ds [Vh]dS 

1 O(hn/2)t41,K, U K211 Vh I1m,K1UK2 

FIF IhK 

1< o(1) 0|1,K U K2l Vh I~m,Kl UK2 

for each interface F = K1 n K2, and 

|F1 I PO POF [ Vh ]n'rj <0? (1 ) |+| 11, KI Vh 11 m ,K 

for F c aK n aG with Dirichlet boundary conditions. Otherwise, 

FI I PO POF[ Vh]n r = 0 

for F c aK n aG, since in that case 4 e Co (G). Therefore, 

(32) | J. 4PDFV nrdS < 0(1)II IIIIVh Im h. 
K FcaK F 

Combining (29)-(32), we have proved Lemma 1. O 

LEMMA 2. The condition (El) + (Ml) gives 

IT4(+,Vh) I< ?(11 1111 VhIlvlm h' r = 1929,.. . ,n. 

Proof. By virtue of the decomposition (5) of the function vh we have 

K, 'K (V0)nds=O, 
K aK 

and so 

(33) Tr(4 9 Vh) = |J 4Nl(Vh)fnrdS- 
K aK 

For every function f E L2(K) let 

p 1Kf = | fdx, K I= 1 dx 

be the mean value of f over the element K. The associated remainder term is 

Rof =f- PJKf. 
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Then we write 

Tr 
( 4Oh ) = ( Vh ) n ds = E PNNl(Vh)fnrdS 
I~(iP~v) = KL 'PN1( h~flrdO=rKdS 

(34) K 

+ E J Ro4Nl(Vh)nrfdS 
K aK 

Applying the condition (El) and the regularity assumption of element partitions to 
the first term on the right-hand side of (34) gives 

| N oAN1 ( h )n N Is|<E|P 1(O r dS| Y2J P l(hfr dS -<J1 POK fNl(Vh)nld 
K K K K 

(35) 1< I (h n'2)I 'P III hImK~~()I PIOKIV ~ 

KIlK I K 

< o(l)11 0 loll hIalm ,h- 

The second term can be estimated by use of the condition (MI) and interpolation 
theory as follows: 

| R@4Nl (VAh )flr dS | < ( laKtRX4)2 ds) (f Nl(vh)2ds) 

< o(l) I 1 KII OhI~mK' 

Therefore, 

(36) | afK R4NlJ(Vh)nrdS < o(1l)I01IIVhIIm h. 
K ~K 

Lemma 2 now follows from (34)-(36). 0 

LEMMA 3. The condition (F2) yields 

(37) ITk.r(4' Vh) I < ChI'P lVI2,h + o(l)1I 4 liii Vh 112,h k, r = 1,2, .. ., n. 

Proof. We recall that the condition (F2) is obtained from the condition (Fl) by 
replacing the functions Vh by their derivatives DkVh. Therefore, Lemma 3 follows as 
in the proof of Lemma 1 by replacing Vh by DkVh. z 

LEMMA 4. The condition (E2) + (M2) yields 

(38) ITkr(' 9Vh) o (1)I I'PlI 1vhII2,h, k, r = 1,2, ..., n. 

Proof. Using the same argument as in the proof of Lemma 2, Lemma 4 is obtained 
by replacing Vh by DkVh, and C1, N1 by C2, N2. ?J 

From the above lemmas it follows that the F-E-M-Test, described in Section 2, 
provides a simple sufficient condition for the validity of the generalized patch test 
for second-order and fourth-order problems. Therefore, the F-E-M-Test can be used 
for assessing convergence of nonconforming elements applied to general elliptic 
boundary value problems of order two or four. 

We remark in passing that the F-E-M-Test is not necessary for convergence. It is 
only a sufficient condition. 
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Finally, we would like to emphasize the fact that the F-E-M Test checks only local 
properties of the shape functions and/or their first derivatives, namely along each 
interface or on each element. In practice, most of the nonconforming elements, 
invented by engineers, are constructed by mechanical considerations and intuitions, 
based upon a local analysis of shape functions and their derivatives on an individual 
element, which leads exactly to the condition (F) or the condition (E) + (M), e.g., 
Morley's, de Veubeke's, Sander-Beckers', and Taylor's elements. Therefore, the 
F-E-M-Test should be able to deal with a sufficiently wide class of nonconforming 
elements in practical applications. 
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